Energy Efficient Ultra-low NOx Burner (ULNB) Control Technology

Food Industry Energy Research (FIER) RD&D Project Review University of California, Davis October 26, 2004

Project Objective and Need

- Project Objective
 - Reduce Ultra-low NOx Burner (ULNB) Power Consumption by 25%
- Project Need
 - Severe ozone non-attainment in San Joaquin Valley
 - New AQMD rule requires boiler retrofits to 9 ppm NOx starting in 2005
 - Significant hardware and operating costs to achieve 9 ppm affect food processors

ALZETA Products

DURATHERM ™
OEM Residential/Commercial Low NO_x Burners

CSB ™ & CSB microSTAR ™ Industrial/Commercial Ultra-Low NO_x Burners

EDGE™
Catalytic and Thermal Oxidizers

CSB™ Ultra-Low NO_X Burners

Advanced Combustion Clean Air Solutions for Industry

CSB microSTAR ™

Commercial Boilers and Process Heaters

2 – 14.7 MMBtu/hr 0.5 – 4 MW_t

CSBTM

Industrial Boilers and Process Heaters

16.8 - 130 MMBtu/hr 4 - 35 MW_t

CSB Product Description

- Fully Premixed Surface-Stabilized Burner
- All-Metal Burner Surface
- Surface Flux to 1.4 MMBtu/hr/ft²
- Single Burners to 180 MMBtu/hr
- Optimized for Ultra-Low NO_x and CO Emissions

CSB Burner Head

How the CSB Works

- Premixed Combustion
 - Combustion takes place at uniform temperature
 - Flame temperature a balance between emissions and flame stability
- Surface Stabilization
 - Increases flame stability at lean limit
 - Increases heat transfer from flame zone

How Do We Control NO_X?

- NO_x is Primarily a Function of Flame Temperature
 - Flame temperature controlled by dilution of fuel-air premix with additional air or flue gas
 - Heat release rate and furnace design are secondary effects with CSB

CSB NO_x vs Excess Air

High Efficiency CSB

- NO_x Reduction with Low Excess Air
 - Flue Gas Instead of Excess Air Reduces
 Flame Temperature
 - Lower Flame Temperature = Lower NO_x
- Flue Gas Recirculation (FGR)
 Reduces Thermal Loss From Stack
 - Low Thermal Loss = High Efficiency

CSB NO_x vs Total Dilution

20%

0%

40%

Total Dilution

60%

80%

Burner and Fan Performance

- Burner Behaves as a Constant Mass Flow Device. Heat Input Proportional to Mass Flow of Air
- Fan Behaves as Constant Volume Device
 - For Fixed Density, Power Scales with Mass Flow Cubed! (dp x Q). Dilution requires more power.
 - Lower Density Air Requires Larger Housing and More Work for Fixed Mass Flow

Fan Power Issues

- Final 20% of Heat Input Requires 50% of Fan Power, Bigger Motors Use More Power at All Load Levels
- FGR Reduces Fuel Usage (Good)
 - Increases Mass Flow and Average Temperature of Diluent Through Fan
 - Therefore INCREASES Fan Size and Power Usage (Bad)

Improving Performance

- Fuel Component of Costs is Much Greater Than Electric Component
 - Doubling Fan Power has Approximate
 Cost of 1% Decrease in Thermal
 Efficiency
 - End Users Have Been Willing to Use
 More Power to Maintain Efficiency
 - But, Improvements Can Be Made!

Relative Fan Requirements

NO _x Level (ppm)	Relative Mass Flow	Relative Volume (Inverse of Density)	Relative Fan Power	Fan hp for 50 MMBtu/hr Burner
100	1.0	1.0	1	25
30	1.15	1.09	1.80	45
9 (w/Ex.Air)	1.4	1.0	2.74	68
9 (w/ FGR)	1.4	1.22	4.08	102

Fan Power vs Load

Improving Performance

- Fan Power Requirement Can be Reduced with Minimal Impact on Thermal Efficiency
 - Address Power Usage at Top 20% of Thermal Load Curve
 - Maintain Maximum Power Rating while
 Allowing Thermal Efficiency to
 Decrease at Maximum Input

Fan Power w/ EA and FGR

Current Approach vs Hybrid

Implementation of Design

- Select Fan Housing and Motor for Excess Air Operation at High Fire
- Operate at Maximum FGR until "FGR Capacity" reached (~85% load)
- From 85-100% Load, Decrease FGR Fraction of Diluent, Increase Mass Flow

Implementation of Design

- Requires fuel-air ratio control modifications
 - Fixed fan-damper setting with variable fuel input
 - Control modification demonstrated prior to project start
 - Initially developed to track ambient air variation

End User Benefits

Basis	Annual Operating Cost Savings (\$.10/kWh and 25% average boiler usage)	Capital Cost Savings (25% lower cost of Alzeta fan)
Single User (50 MMBtu/hr burner)	\$4,080	\$3,000
San Joaquin Valley (SJVUAPCD Inv.)	\$6,500,000	\$4,800,000
State of California (Based on ARB Emissions Inventory)	\$21,300,000	\$16,000,000

Reduction in Power Use

Basis	Reduction in Peak Demand	Reduction in Annual Energy Usage
Single User (50 MMBtu/hr capacity)	18.6 kW	340.8 MW-hrs
San Joaquin Valley (SJVUAPCD Inventory)	29.7 MW	65,300 MW-hrs
State of California (Based on ARB Emissions Inventory)	99.3 MW	217,400 MW-hrs

Summary of Benefits

- Reduced Initial Hardware Cost (Smaller Fan and Lower Amperage Power Hardware)
- Reduced Fan Power at All Load
 Levels. Power Savings at All Loads
- Increased Thermal Turndown

Package Watertube Boiler

Industrial Firetube Boiler

Demonstration Site

- 75 MMBtu/hr Package Watertube Boiler
 - Dairy Products Company Located in Central Valley
 - Installation in Progress for November Startup

Contact Information

- ALZETA Corporation
 2343 Calle Del Mundo
 Santa Clara, CA 95054
 Alzeta.com
- John Sullivan
 - Sr. VP of Research & Development
 - **-408-727-8282**
 - jsullivan@alzeta.com

